skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gossage, Zachary_T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The solid electrolyte interphase (SEI) is a dynamic, electronically insulating film that forms on the negative electrode of Li+batteries (LIBs) and enables ion movement to/from the interface while preventing electrolyte breakdown. However, there is limited comparative understanding of LIB SEIs with respect to those formed on Na+and K+electrolytes for emerging battery concepts. We used scanning electrochemical microscopy (SECM) for the in situ interfacial analysis of incipient SEIs in Li+, K+and Na+electrolytes formed on multi‐layer graphene. Feedback images using 300 nm SECM probes and ion‐sensitive measurements indicated a superior passivation and highest cation flux for a Li+‐SEI in contrast to Na+and K+‐SEIs. Ex situ X‐ray photoelectron spectroscopy indicated significant fluoride formation for only Li+and Na+‐SEIs, enabling correlation to in situ SECM measurements. While SEI chemistry remains complex, these electroanalytical methods reveal links between chemical variables and the interfacial properties of materials for energy storage. 
    more » « less